Peptide secondary structure folding reaction coordinate: correlation between uv raman amide III frequency, Psi Ramachandran angle, and hydrogen bonding.
نویسندگان
چکیده
We used UV resonance Raman (UVRR) spectroscopy to quantitatively correlate the peptide bond AmIII3 frequency to its Psi Ramachandran angle and to the number and types of amide hydrogen bonds at different temperatures. This information allows us to develop a family of relationships to directly estimate the Psi Ramachandran angle from measured UVRR AmIII3 frequencies for peptide bonds (PBs) with known hydrogen bonding (HB). These relationships ignore the more modest Phi Ramachandran angle dependence and allow determination of the Psi angle with a standard error of +/-8 degrees , if the HB state of a PB is known. This is normally the case if a known secondary structure motif is studied. Further, if the HB state of a PB in water is unknown, the extreme alterations in such a state could additionally bias the Psi angle by +/-6 degrees . The resulting ability to measure Psi spectroscopically will enable new incisive protein conformational studies, especially in the field of protein folding. This is because any attempt to understand reaction mechanisms requires elucidation of the relevant reaction coordinate(s). The Psi angle is precisely the reaction coordinate that determines secondary structure changes. As shown elsewhere (Mikhonin et al. J. Am. Chem. Soc. 2005, 127, 7712), this correlation can be used to determine portions of the energy landscape along the Psi reaction coordinate.
منابع مشابه
Direct UV Raman Monitoring of 310-Helix and π-Bulge Premelting during r-Helix Unfolding
We used UV resonance Raman (UVRR) spectroscopy exciting at ∼200 nm within the peptide bond π f π* transitions to selectively study the amide vibrations of peptide bonds during R-helix melting. The dependence of the amide frequencies on theirΨ Ramachandran angles and hydrogen bonding enables us, for the first time, to experimentally determine the temperature dependence of the peptide bond Ψ Rama...
متن کاملDihedral psi angle dependence of the amide III vibration: a uniquely sensitive UV resonance Raman secondary structural probe.
UV resonance Raman studies of peptide and protein secondary structure demonstrate an extraordinary sensitivity of the amide III (Am III) vibration and the C(alpha)H bending vibration to the amide backbone conformation. We demonstrate that this sensitivity results from a Ramachandran dihedral psi angle dependent coupling of the amide N-H motion to (C)C(alpha)H motion, which results in a psi depe...
متن کاملElucidating Peptide and Protein Structure and Dynamics: UV Resonance Raman Spectroscopy.
UV resonance Raman spectroscopy (UVRR) is a powerful method that has the requisite selectivity and sensitivity to incisively monitor biomolecular structure and dynamics in solution. In this perspective, we highlight applications of UVRR for studying peptide and protein structure and the dynamics of protein and peptide folding. UVRR spectral monitors of protein secondary structure, such as the A...
متن کاملUV Raman demonstrates that alpha-helical polyalanine peptides melt to polyproline II conformations.
We examined the 204-nm UV Raman spectra of the peptide XAO, which was previously found by Shi et al.'s NMR study to occur in aqueous solution in a polyproline II (PPII) conformation. The UV Raman spectra of XAO are essentially identical to the spectra of small peptides such as ala(5) and to the large 21-residue predominantly Ala peptide, AP. We conclude that the non-alpha-helical conformations ...
متن کاملComputational and experimental determination of the alpha-helix unfolding reaction coordinate.
We demonstrate a calculated alpha-helix peptide folding energy landscape which accurately simulates the first experimentally measured alpha-helix melting energy landscape. We examine a 21-amino acid, mainly polyalanine peptide and calculate the free energy along the Psi Ramachandran angle secondary folding coordinate. The experimental free energy landscape was determined using UV resonance Rama...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- The journal of physical chemistry. B
دوره 110 4 شماره
صفحات -
تاریخ انتشار 2006